In previous post, we explored the fundamental divide between Information Technology (IT) and Operational Technology (OT). We established that while IT manages data and applications, OT controls the physical heartbeat of our world from factory floors to water treatment plants. In this post we are diving deeper into the bridge that connects them: Interoperability.
As Industry 4.0 and the Internet of Things (IoT) accelerate, the "air gap" that once separated these domains is evolving. For modern enterprises, the goal isn't just to have IT and OT coexist, but to have them communicate seamlessly. Whether the use-cases are security, real time quality control, or predictive maintenance, to name a few, this is why interoperability becomes the critical engine for operational excellence.
The Interoperability Architecture
Interoperability is more than just connecting cables; it’s about creating a unified architecture where data flows securely between the shop floor and the “top floor”. In legacy environments, OT systems (like SCADA and PLCs) often run on isolated, proprietary networks that don’t speak the same language as IT’s cloud-based analytics platforms.
To bridge this, a robust interoperability architecture is required. This architecture must support:
- Industrial Data Lake: A single storage platform that can handle block, file, and object data is essential for bridging the gap between IT and OT. This unified approach prevents data silos by allowing proprietary OT sensor data to coexist on the same high-performance storage as IT applications (such as ERP and CRM). The benefit is the creation of a high-performance Industrial Data Lake, where OT and IT data from various sources can be streamed directly, minimizing the need for data movement, a critical efficiency gain.
- Real Time Analytics: OT sensors continuously monitor machine conditions including: vibration, temperature, and other critical parameters, generating real-time telemetry data. An interoperable architecture built on high performance flash storage enables instant processing of this data stream. By integrating IT analytics platforms with predictive algorithms, the system identifies anomalies before they escalate, accelerating maintenance response, optimizing operations, and streamlining exception handling. This approach reduces downtime, lowers maintenance costs, and extends overall asset life.
- Standards Based Design: As outlined in recent cybersecurity research, modern OT environments require datasets that correlate physical process data with network traffic logs to detect anomalies effectively. An interoperable architecture facilitates this by centralizing data for analysis without compromising the security posture. Also, IT/OT convergence requires a platform capable of securely managing OT data, often through IT standards. An API-First Design allows the entire platform to be built on robust APIs, enabling IT to easily integrate storage provisioning, monitoring, and data protection into standard, policy-driven IT automation tools (e.g., Kubernetes, orchestration software).
Pure Storage addresses these interoperability requirements with the Purity operating environment, which abstracts the complexity of underlying hardware and provides a seamless, multiprotocol experience (NFS, SMB, S3, FC, iSCSI). This ensures that whether data originates from a robotic arm or a CRM application, it is stored, protected, and accessible through a single, unified data plane.
Real-World Application: A Large Regional Water District
Consider a large regional water district, a major provider serving millions of residents. In an environment like this, maintaining water quality and service reliability is a 24/7 mission-critical OT function. Its infrastructure relies on complex SCADA systems to monitor variables like flow rates, tank levels, and chemical compositions across hundreds of miles of pipelines and treatment facilities.
By adopting an interoperable architecture, an organization like this can break down the silos between its operational data and its IT capabilities. Instead of SCADA data remaining locked in a control room, it can be securely replicated to IT environments for long-term trending and capacity planning. For instance, historical flow data combined with predictive analytics can help forecast demand spikes or identify aging infrastructure before a leak occurs. This convergence transforms raw operational data into actionable business intelligence, ensuring reliability for the communities they serve.
Why We Champion Compliance and Governance
Opening up OT systems to IT networks can introduce new risks. In the world of OT, "move fast and break things" is not an option; reliability and safety are paramount. This is why Pure Storage wraps interoperability in a framework of compliance and governance, not limited to:
- FIPS 140-2 Certification & Common Criteria: We utilize FIPS 140-2 certified encryption modules and have achieved Common Criteria certification.
- Data Sovereignty: Our architecture includes built-in governance features like Always-On Encryption and rapid data locking to ensure compliance with domestic and international regulations, protecting sensitive data regardless of where it resides.
- Compliance: Pure Fusion delivers policy defined storage provisioning, automating the deployment with specified requirements for tags, protection, and replication.
By embedding these standards directly into the storage array, Pure Storage allows organizations to innovate with interoperability while maintaining the security posture that critical OT infrastructure demands.
Next in the series: We will explore further into IT/OT interoperability and processing of data at the edge. Stay tuned!